Theory of Computation

Lecture 04

Books

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

Programs and Computable Functions

SIMPLE LANGUAGE II

Agenda

>Multiply Two Variables
\Rightarrow The Macro Expansion of $Z_{1} \leftarrow X_{1}+Y$
>Subtraction
$>$ Syntax
$>$ Snapshot
>Computable Functions

Multiply Two Variables

Since multiplication can be regarded as repeated addition, we are led to the "program"

Multiply Two Variables

$$
\begin{array}{ll}
\text { [B] } & Z_{2} \leftarrow X_{2} \\
& \text { IF } Z_{2} \neq 0 \text { GOTO } A \\
{[A]} & \text { GOTO } E \\
& Z_{2} \leftarrow Z_{2}-1 \\
& Z_{1} \leftarrow X_{1}+Y \\
& Y \leftarrow Z_{1} \\
& \text { GOTO } B
\end{array}
$$

Multiply Two Variables

Of course, the "instruction"
$Z_{1} \leftarrow X_{1}+Y$ is not permitted in $\quad[B]$ the language
What we have in mind is $\quad[A]$ that since we already have an addition program, we can replace the macro $Z_{1} \leftarrow X_{1}+Y$
$Z_{2} \leftarrow X_{2}$
IF $Z_{2} \neq 0$ GOTO A
GOTO E
$Z_{2} \leftarrow Z_{2} \rightarrow 1$
$Z_{1} \leftarrow X_{1}+Y$
$Y \leftarrow Z_{1}$
GOTO B by a program for computing it, which we will call its macro expansion.

$$
\begin{aligned}
Z_{1} & \leftarrow X_{1}+Y \\
Y & \leftarrow Z_{1}
\end{aligned}
$$

Why not?

$$
Y \leftarrow X_{1}+Y
$$

Multiply Two Variables

$Y \leftarrow X_{1}+Y$
$Y \leftarrow X_{1}$
$Z \leftarrow Y$
[B] IF $Z \neq 0$ GOTO A
GOTO E
[A] $\quad Z \leftarrow Z-1$
$Y \leftarrow Y+1$
GOTO B

What does this program actually compute?
It should not be difficult to see that instead of computing $x_{1}+y$ as desired,
this program computes
$2 x_{1}$

The Macro Expansion of $Z_{1} \leftarrow X_{1}+Y:$

[B] | $Z_{2} \leftarrow X_{2}$ |
| :--- |
| IF $Z_{2} \neq 0$ GOTO A |

[A] $Z_{2} \leftarrow Z_{2}-1$
$Z_{1} \leftarrow X_{1}$
$Z_{3} \leftarrow Y$
[B_{2}] IF $Z_{3} \neq 0$ GOTO A_{2}
GOTO E_{2}
$\left[A_{2}\right] \quad Z_{3} \leftarrow Z_{3}-1$
$Z_{1} \leftarrow Z_{1}+1$
GOTO B_{2}
[E_{2}] $\quad Y \leftarrow Z_{1}$
GOTO B

Macro Expansion of $Z_{1} \leftarrow X_{1}+Y$

The Macro Expansion of $Z_{1} \leftarrow X_{1}+Y:$

1. The local variable Z_{1} in the addition program in (d) must be replaced by another local variable (we have used Z_{3}) because Z_{1} (the other name for Z) is also used as a local variable in the multiplication program.
2. The labels A, B, E are used in the multiplication program and hence cannot be used in the macro expansion. We have used A_{2}, B_{2}, E_{2} instead.
3. The instruction GOTO E_{2} terminates the addition. Hence, it is necessary that the instruction immediately following the macro expansion be labeled E_{2}.

What is the Function?

If we begin with $X_{1}=5, X_{2}=2$, the program first sets $Y=5$ and $Z=2$.

Successively the program sets $Y=4$
$Z=1$ and $Y=3, Z=0$. Thus, the
computation terminates with $Y=3$
[A] $=5-2$.
$Y \leftarrow X_{1}$

Clearly, if we begin with $X_{1}=m, X_{2}: \quad[B]$ n, where $m \geq n$, the program will terminate with $Y=m-n$.

What is the Function?

What happens if we begin with a value of X_{1} less than the value of X_{2}, e.g., $X_{1}=2, X_{2}=5$?
The program sets $Y=2$ and $Z=5$ and successively sets $Y=1, Z=4$ and $Y=0, Z=3$. At this point the computation enters the "loop":
[A] IF $Y \neq 0$ GOTO B GOTO A
$Y \leftarrow X_{1}$
$Z \leftarrow X_{2}$
[C] IF $Z \neq 0$ GOTO A
GOTO E
IF $Y \neq 0$ GOTO B
GOTO A
$Y \leftarrow Y-1$
$Z \leftarrow Z-1$
GOTO C

Subtraction

Since $y=0$, there is no way out of this loop and the computation will continue "forever."

Thus, if we begin with $X_{1}=m, X_{2}=n$, where $m<n$, the computation will never terminate.

In this case (and in similar cases) we will say that the program computes the partial function.

$$
g\left(x_{1}, x_{2}\right)= \begin{cases}x_{1}-x_{2} & \text { if } \quad x_{1} \geq x_{2} \\ \uparrow & \text { if } \quad x_{1}<x_{2}\end{cases}
$$

Syntax

A state of a program \mathscr{P}^{2} is a list of equations of the form $V=m$, where V is a variable and m is a number,
including an equation for each variable that occurs in \mathscr{P}^{\prime} and including no two equations with the same variable.

Syntax

VALID STATES

INVALID STATES

let \mathscr{P}^{\prime} be the program, which contains the variables $X=3, \quad Z=3$
X, Y, and Z.
The list

$$
X=3, \quad X=4, \quad Y=2, \quad Z=2
$$

$$
X=4, Y=3, z=3
$$

is thus a state of \mathscr{O}.
$X_{1}=4, \quad X_{2}=5, \quad Y=4, \quad Z=4$

Snapshot

Suppose we have a program \mathscr{P} and a state σ of \mathscr{P}. In order to say what happens "next," we also need to know which instruction of \mathscr{P} is about to be executed.

We therefore define a snapshot or instantaneous description of a program \mathscr{P}^{\prime} of length n to be a pair (i, σ) where $1 \leq \mathrm{i} \leq \mathrm{n}+1$, and σ is a state of \mathscr{C}.
Intuitively the number i indicates that it is the $i^{\text {th }}$ instruction which is about to be executed; $\mathrm{i}=\mathrm{n}+1$ corresponds to a "stop" instruction.

Snapshot

If $s=(i, \sigma)$ is a snapshot of \mathscr{P} and V is a variable of \mathscr{P}, then the value of V at s just means the value of V at σ.

A snapshot (i, σ) of a program \mathscr{P} of length n is called terminal if $i=n+1$. If (i, σ) is a nonterminal snapshot of \mathscr{P}, we define the successor of (i, σ) to be the snapshot (j, τ) defined as follows:

Case 1. The i th instruction of \mathscr{P} is $V \leftarrow V+1$ and σ contains the equation $V=m$. Then $j=i+1$ and τ is obtained from σ by replacing the equation $V=m$ by $V=m+1$ (i.e., the value of V at τ is $m+1$).

Snapshot

Case 2. The i th instruction of \mathscr{P} is $V \leftarrow V-1$ and σ contains the equation $V=m$. Then $j=i+1$ and τ is obtained from σ by replacing the equation $V=m$ by $V=m-1$ if $m \neq 0$; if $m=0$, $\tau=\sigma$.
Case 3. The i th instruction of \mathscr{P} is $V \leftarrow V$. Then $\tau=\sigma$ and $j=i+1$.
Case 4. The i th instruction of \mathscr{P} is IF $V \neq 0$ GOTO L. Then $\tau=\sigma$, and there are two subcases:

Case 4a. σ contains the equation $V=0$. Then $j=i+1$.
Case 4b. σ contains the equation $V=m$ where $m \neq 0$. Then, if there is an instruction of \mathscr{P} labeled L, j is the least number such that the j th instruction of \mathscr{P} is labeled L. Otherwise, $j=n+1$.

$$
\begin{array}{ll}
{[A]} & \text { IF } X \neq 0 \text { GOTO } B \\
& Z \leftarrow Z+1 \\
& \text { IF } Z \neq 0 \text { GOTO } E \\
{[B]} & X \leftarrow X-1 \\
& Y \leftarrow Y+1 \\
& Z \leftarrow Z+1 \\
& \text { IF } Z \neq 0 \text { GOTO } A
\end{array}
$$

For an example, we return to the program of (b), Section 2. Let σ be the state

$$
X=4, \quad Y=0, \quad Z=0
$$

and let us compute the successor of the snapshots (i, σ) for various values of i.

For $i=1$, the successor is $(4, \sigma)$ where σ is as above. For $i=2$, the successor is ($3, \tau$), where τ consists of the equations

$$
X=4, \quad Y=0, \quad Z=1 .
$$

For $i=7$, the successor is $(8, \sigma)$. This is a terminal snapshot.

A computation of a program

A computation of a program \mathscr{P} is defined to be a sequence (i.e., a list) $s_{1}, s_{2}, \ldots, s_{k}$ of snapshots of \mathscr{P} such that s_{i+1} is the successor of s_{i} for $i=1,2, \ldots, k-1$ and s_{k} is terminal.

Computable Functions

Thus, let \mathscr{P} be any program in the language \mathscr{S} and let r_{1}, \ldots, r_{m} be m given numbers. We form the state σ of \mathscr{P} which consists of the equations

$$
X_{1}=r_{1}, \quad X_{2}=r_{2}, \quad \ldots, \quad X_{m}=r_{m}, \quad Y=0
$$

together with the equations $V=0$ for each variable V in \mathscr{P} other than X_{1}, \ldots, X_{m}, Y. We will call this the initial state, and the snapshot $(1, \sigma)$, the initial snapshot.
Case 1. There is a computation $s_{1}, s_{2}, \ldots, s_{k}$ of \mathscr{P} beginning with the initial snapshot. Then we write $\psi_{9}^{(m)}\left(r_{1}, r_{2}, \ldots, r_{m}\right)$ for the value of the variable Y at the (terminal) snapshot s_{k}.
Case 2. There is no such computation; i.e., there is an infinite sequence $s_{1}, s_{2}, s_{3}, \ldots$ beginning with the initial snapshot where each s_{i+1} is the successor of s_{i}. In this case $\psi_{\mathscr{P}}^{(m)}\left(r_{1}, \ldots, r_{m}\right)$ is undefined.

Example

$$
\begin{align*}
& \text { (1, }\{X=r, Y=0, Z=0\} \text {), } \\
& \text { (4, }\{X=r, Y=0, Z=0\} \text {), } \\
& \text { (5, }\{X=r-1, Y=0, Z=0\} \text {), } \\
& \text { (6, }\{X=r-1, Y=1, Z=0\} \text {), } \\
& \text { (7, }\{X=r-1, Y=1, Z=1\} \text {), } \tag{2}\\
& \text { (1, }\{X=r-1, Y=1, Z=1\} \text {), } \\
& \text { (1, }\{X=0, Y=r, Z=r\} \text {), } \\
& \text { (2, }\{X=0, Y=r, Z=r\} \text {), } \\
& \text { [} A \text {] IF } X \neq 0 \text { GOTO } B \tag{1}\\
& Z \leftarrow Z+1 \\
& \text { IF } Z \neq 0 \text { GOTO } E \tag{3}\\
& \text { [B] } \quad X \leftarrow X-1 \tag{4}\\
& Y \leftarrow Y+1 \tag{5}\\
& Z \leftarrow Z+1 \tag{6}\\
& \text { IF } Z \neq 0 \text { GOTO } A \tag{7}\\
& \text { (} 8,\{X=0, Y=r, Z=r+1\} \text {). }
\end{align*}
$$

Example a

[A] $\quad X \leftarrow X-1$
$\begin{array}{ll}Y \leftarrow Y+1 & \text { (a) } \quad \psi^{(1)}(r)=\left\{\begin{array}{ll}1 & \text { if } r=0 \\ r & \text { otherwise },\end{array}, ~ \text { IF } X \neq 0 \text { GOTO } A\right.\end{array} \quad$.

Example b, c

[A]	IF $X \neq 0$ GOTO B	[A]	$\begin{aligned} & \text { If } X \neq 0 \text { GOTO } B \\ & \text { GOTO } C \end{aligned}$
	$Z \leftarrow Z+1$	[B]	$X \leftarrow X-1$
	IF $Z \neq 0$ GOTO E		$Y \leftarrow Y+1$
[B]	$X \leftarrow X-1$		$Z \leftarrow Z+1$
	$Y \leftarrow Y+1$		GOTO A
	$\begin{aligned} & Z \leftarrow Z+1 \\ & \mathrm{IF} Z \neq 0 \mathrm{GOTO} A \end{aligned}$	[C]	IF $Z \neq 0$ GOTO D
			GOTO E
		[D]	$Z \leftarrow Z-1$
			$X \leftarrow X+1$
			GOTO C
	(b), (c) ψ^{\prime}		

Example d

$$
\begin{aligned}
& Y \leftarrow X_{1} \\
& Z \leftarrow X_{2} \\
& \text { [B] IF } Z \neq 0 \text { GOTO } A \\
& \text { GOTO E } \\
& \text { (d) } \quad \psi^{(2)}\left(r_{1}, r_{2}\right)=r_{1}+r_{2} \text {, } \\
& \text { [} A \text {] } \quad Z \leftarrow Z-1 \\
& Y \leftarrow Y+1 \\
& \text { GOTO B }
\end{aligned}
$$

Example e

$$
\begin{array}{lll}
& Z_{2} \leftarrow X_{2} \\
{[B]} & \text { IF } Z_{2} \neq 0 \text { GOTO } A & \\
& \text { GOTO } E & \\
{[A]} & Z_{2} \leftarrow Z_{2} \rightarrow 1 & \text { (e) } \psi^{(2)}\left(r_{1}, r_{2}\right)=r_{1} \cdot r_{2}, \\
& Z_{1} \leftarrow X_{1}+Y &
\end{array}
$$

Example f

$$
\begin{array}{ll}
& Y \leftarrow X_{1} \\
& Z \leftarrow X_{2} \\
{[C]} & \text { IF } Z \neq 0 \text { GOTO } A \\
& \text { GOTO } E \\
{[A]} & \text { IF } Y \neq 0 \text { GOTO } B \\
& \text { GOTO } A \\
{[B]} & Y \leftarrow Y-1 \\
& Z \leftarrow Z-1 \\
& \text { GOTO } C
\end{array}
$$

Example

(c) $\psi_{\mathscr{\vartheta}}^{(2)}\left(r_{1}, r_{2}\right)=r_{1}$,
(d) $\quad \psi_{\mathscr{D}}^{(1)}\left(r_{1}\right)=r_{1}+0=r_{1}$,
$\psi_{\mathscr{P}}^{(3)}\left(r_{1}, r_{2}, r_{3}\right)=r_{1}+r_{2}$

Total and Partial Functions

As an example, let f be the set of ordered pairs $\left(n, n^{2}\right)$ for $n \in N$. Then, for each $n \in N, f(n)=n^{2}$. The domain of f is N. The range of f is the set of perfect squares.
$>A$ partial function on a set S is simply a function whose domain is a subset of S.
$>$ An example of a partial function on N is given by $g(n)=V n$, where the domain of g is the set of perfect squares.
$>$ If a partial function on S has the domain S, then it is called total.

Computable Functions

For any program \mathscr{P} and any positive integer m, the function $\psi_{\mathscr{P}}^{(m)}\left(x_{1}, \ldots, x_{m}\right)$ is said to be computed by \mathscr{P}. A given partial function g (of one or more variables) is said to be partially computable if it is computed by some program. That is, g is partially computable if there is a program \mathscr{P} such that

$$
g\left(r_{1}, \ldots, r_{m}\right)=\psi_{\mathscr{P}}^{(m)}\left(r_{1}, \ldots, r_{m}\right)
$$

$$
\text { for all } r_{1}, \ldots, r_{m}
$$

Computable Functions

A given function g of m variables is called total if $g\left(r_{1}, \ldots, r_{m}\right)$ is defined for all r_{1}, \ldots, r_{m}.

A function is said to be computable if it is both partially computable and total.

Our examples from Section 2 give us a short list of partially computable functions, namely: $x, x+y, x \cdot y$, and $x-y$. Of these, all except the last one are total and hence computable.

